Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The widespread utilization of perovskite-based photovoltaics requires probing both the structural and optical properties under extreme operating conditions to gain a holistic understanding of the material behavior under stressors. Here, we investigate the temperature-dependent behavior of mixed A-site cation lead triiodide perovskite thin films (85% methylammonium and 15% formamidinium) in the range from 300 to 20 K. Through a combination of optical and structural techniques, we find that the tetragonal-to-orthorhombic phase transition occurs at ∼110 K for this perovskite composition, as indicated by the change in the diffraction pattern. With decreasing temperature, the quantum yield increases with a concurrent elongation of the carrier lifetimes, indicating suppression of nonradiative recombination pathways. Interestingly, in contrast to single A-site cation perovskites, an additional optical transition appears in the absorption spectrum when the phase transition is approached, which is also reflected in the emission spectrum. We propose that the splitting of the optical absorption and emission is due to local segregation of the mixed cation perovskite during the phase transition.more » « less
-
Aluminum nanocrystals (AlNCs) are of increasing interest as sustainable, earth-abundant nanoparticles for visible wavelength plasmonics and as versatile nanoantennas for energy-efficient plasmonic photocatalysis. Here, we show that annealing AlNCs under various gases and thermal conditions induces substantial, systematic changes in their surface oxide, modifying crystalline phase, surface morphology, density, and defect type and concentration. Tailoring the surface oxide properties enables AlNCs to function as all-aluminum-based antenna-reactor plasmonic photocatalysts, with the modified surface oxides providing varying reactivities and selectivities for several chemical reactions.more » « less
-
Intermolecular interactions on inorganic substrates can have a critical impact on the electrochemical and photophysical properties of the materials and subsequent performance in hybrid electronics. Critical to the intentional formation or inhibition of these processes is controlling interactions between molecules on a surface. In this report, we investigated the impact of surface loading and atomic-layer-deposited Al2O3 overlayers on the intermolecular interactions of a ZrO2-bound anthracene derivative as probed by the photophysical properties of the interface. While surface loading density had no impact on the absorption spectra of the films, there was an increase in excimer features with surface loading as observed by both emission and transient absorption. The addition of ALD overlayers of Al2O3 resulted in a decrease in excimer formation, but the emission and transient absorption spectra were still dominated by excimer features. These results suggest that ALD may provide a post-surface loading means of influencing such intermolecular interactions.more » « less
An official website of the United States government
